Estimation in partially linear models with missing responses at random
نویسندگان
چکیده
منابع مشابه
Partially linear varying coefficient models with missing at random responses
This paper considers partially linear varying coefficient models when the response variable is missing at random. The paper uses imputation techniques to develop an omnibus specification test. The test is based on a simple modification of a Cramer von Mises functional that overcomes the curse of dimensionality often associated with the standard Cramer von Mises functional. The paper also consid...
متن کاملPartially linear single-index model with missing responses at random
This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are...
متن کاملEstimation in Partially Linear Models With Missing Covariates
The partially linear model Y DXT ̄C o.Z/C 2 has been studied extensively when data are completely observed. In this article, we consider the case where the covariate X is sometimes missing, with missingness probability 1⁄4 depending on .Y;Z/. New methods are developed for estimating ̄ and o.¢/. Our methods are shown to outperform asymptotically methods based only on the complete data. Asymptotic ...
متن کاملEfficiency transfer for regression models with responses missing at random
We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the conditional distribution of Y given X can be estimated efficiently using complete case analysis, i.e., one can simply omit incomplete cases and work with an appropriate efficient estimator ...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2007
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2006.10.003